MADE EASY&NEXT IRS GROUP

PRESENT

Corporate Office: 44-A/1, Kalu Sarai, New Delhi 110016 | Web: www.meniit.com

Maximum Marks: 720

Time : 3 Hours

NEET (UG) - 2015

IMPORTANT INSTRUCTIONS

- 1. I he Answer Sheet is inside the Test Booklet. When you arc directed to open the Test Booklet, take out the Answer Sheet and fill in the particulars on **side-1** and **side-2** carefully with blue/ black toll point pen only.
- 2. The test is of 3 hours duration and lest Booklet contains 180 questions. Each question carries 4 marks. For each correct response, the candidate will get 4 marks. For each incorrect response, **one mark** will be deducted from the total scores. The maximum marks are **720**.
- 3. Use Blue/Black Ball Point Pen only for writing particulars on this page / marking responses.
- 4. Rough work o to be done on the space provided for this purpose in the Test Booklet only.
- 5. On completion of the test, the candidate must handover the Answer Sheet to the invigilator in the Room/Hall. The candidate are allowed to take away this Test Booklet with them.
- 6. The CODE forth it Booklet is **S**. Make sure that the CODE printed on **Side-2** of the Answer Sheet is the same as that on this Booklet. In case of discrepancy, the candidate should immediately report the matter to the invigilator for replacement of both the Test Booklet and the Answer Sheet.
- The candidates should ensure that the Answer Sheet is not folded. Do not make any stray marks on the Answer Sheet. Do not write your roll no. anywhere else except in the specified space in the Test Booklet /vAnswer Sheet.
- 8. Use of white fluid for correction is NOT permissible on the Answer Sheet.
- 9. Each candidate must show on demand his/her Admission Card to the Invigilator.
- 10. No candidates, without special permission of the Superintendent or Invigilator would leave his/her seat.
- 11. The candidates should not leave the Examination Hall without handing over their Answer Sheet to the Invigilator on duty and sign the Attendance Sheet twice. Cases where a candidate has not signed the Attendance Sheet the second time will be deemed not to have handed over Answer Sheet and dealt with as an unfair means ease.
- 12. Use of Electronic / Manual Calculator is prohibited
- 13. The candidates are governed by all Rules and Regulations of the Board with regard to their conduct in the Examination Hall. All cases of unfair means will be dealt with as per Rules and Regulations of the Board.

SECTION - I (CHEMISTRY)

180 MARKS

1.^M The reaction of C₆H₅CH=CHCH₃ with HBr produces:

$$C_{g}H_{5}CH_{2}CH_{2}CHCH_{3}$$
(1)

$$B_{T}$$
(2)

$$C_{g}H_{5}CH_{2}CH_{2}CH_{2}B_{T}$$
(3)

$$C_{g}H_{5}CH_{2}CH_{2}CH_{2}CH_{2}B_{T}$$
(4)

$$B_{T}$$
(5)

$$C_{g}H_{5}CH_{2}CH_{2}CH_{3}$$
(6)

$$C_{g}H_{5}CH_{2}CH_{2}CH_{3}$$
(7)
(8)

$$C_{g}H_{5}CH_{2}CH_{3}CH_{$$

	(1)	$C10^{-}$ $C0^{2-}$	(2)	SO_{1}^{2-} NO ₂	(3)	$C10^{-}$ $S0^{2-}$	(4)	CO_{2}^{2-}	SO_{-}^{2-}
40 F	(1)		(-)		(0)		()		, .
10. ^L	An org	anic compound	'X' hav	/ing molecular	formula	$C_5H_{10}O$ yields	phenyl	hydrazoi	ne and gives
	negativ	e response to the	elodotor	m test and 1 olle	en's test.	It produces n-pe	entane of	n reductio	on. X could
	(1)	2_pentanone	(2)	3_pentanone	(3)	n_amyl alcohol	(4)	nentana	1
11 E		2 pentatione	(<u>2</u>)	be compatible	(U)	in annyr alconor	(+)	pentana	1
11.	which	of the options re	present i	ne correct bond Q^-	order?	0- 0 0+		0- 0	O^+
	(1)	$O_2 < O_2 < O_2^+$	(2)	$O_2 > O_2 < O_2^+$	(3)	$O_2 < O_2 > O_2^+$	(4)	$O_2 > C$	$O_2 > O_2^+$
12. ^D	Treatm	ent of cyclopent	anone [O with	methyl	lithium gives wh	ich of th	ne follow	ing species?
	(4)			\checkmark	(a)	G 1	1 1.		
	 Cyclopentanonyl cation Cyclopentanonyl birg discl 				(2)	Cyclopentanony	yl radica	1	
10 M	(3)	Cyclopentation	yi diradi		(4)	Cyclopentanony	yi anion		
13. ^m	The ele	ctrolytic reduction	on of nit	robenzene strong	gly acidi	c medium produ	ces:		1 1
F	(1)	Azoxybenzene	(2)	Azobenzene	(3)	Aniline	(4)	p-Amin	opnenol
14. ^E	Magnet	tic moment 2.84	B.M. is	given by:					
	(At. No (1)	S. $N_1 = 28$, $T_1 = Ti^{3+}$	22, Cr = (2)	24, Co = 27) Cr^{2+}	(3)	Co ²⁺	(4)	Ni ²⁺	
15. ^E	A give	n metal crystalli	zes out	with a cubic stru	ucture ha	ving edge lengt	h of 361	pm If t	here are four
	metal a	toms in one unit	cell, wh	at is the radius c	of one ato	om?		1	
	(1)	127 pm	(2)	80 pm	(3)	108 pm	(4)	40 pm	
16. ^M	Which	of the following	g is the 1	nost correct ele	ctron dis	placement for a	nucleop	hilic rea	ction to take
	place?				6.	-			
		H H	$\frac{2}{Cl}$			$H \longrightarrow H_2$	1		
	(1)	$H_3 C \leftarrow C = C - C + H$	-0		(2)	$H_3C \rightarrow C = C - C - C$.1		
		$H \hookrightarrow C = C = C$	$\frac{1}{2}$			$H C \rightarrow C = C - C$	a		
	(3)	Н			(4)	$H_3 C \neq C = C + C$	C.I		
17. ^E	Which	one of the follow	ving elec	trolytes has the	same val	lue of Van't Hoff	factor (i) as that	of Al ₂ (SO ₄) ₃
	(if all a	re 100 % ionized	1)?						
	(1)	$K_3[Fe(CN)_6]$	(2)	Al(NO ₃) ₃	(3)	$K_4[Fe(CN)_6]$		(4)	K_2SO_4
18. ^E	Nitroge	en dioxide and su	ulphur d	oxide have som	ne proper	ties in common.	Which	property	is shown by
	one of t	these compounds	s, but no	t by the other?					
	(1)	is a reducing ag	gent		(2)	is soluble in wa	ter		

(3) is used as a food-preservative (4) forms 'acid-rain'

	is call	ed:									
	(1)	Williamson co	ntinuous	s etherisation pro	ocess						
	(2)	Etard reaction									
	(3)	Gattermann- K	loch read	ction							
	(4)	Williamson Sy	nthesis								
28. ^M	Cobal not gi	t (III) chloride fo ve test from chlor	orms sev ride ions	veral octahedral of with silver nitra	complex ate at 25	es with ammon °C?	ia. Whic	h of the follo	wing will		
	(1)	CoCl ₃ . 4NH ₃	(2)	COCl ₃ . 5NH ₃	(3)	CoCl ₃ . 6NH ₃	(4)	CoCl ₃ . 3NH	H_3		
29. ^E	A mix	ture of gases cor	ntains H	$_2$ and O_2 gases in	n the rat	io of 1: 4 (w/w)	. What i	s the molar ra	tio of the		
	two gases in the mixture?										
	(1)	4:1	(2)	16:1	(3)	2:1	(4)	1:4			
30. ^E	Which	n of the following	g process	ses does not invo	olve oxic	lation of iron?					
	(1)	Decolorization	of blue	CuSO ₄ solution	by iron						
	(2)	Formation of F	Fe(CO) ₅	from Fe	-			~			
	(3)	Liberation of H	I_2 from	steam by iron at	high ten	nperature		O [*]			
	(4)	Rusting of iron	sheets				$ \leq $				
31. ^M	Becau	se of lanthanoid	contrac	tion, which of t	the flow	ing pairs of ele	ments h	ave nearly sa	me radii?		
	(Num	bers in the parent	hesis ar	e atomic number	:s).			2			
	(1)	Zr (40) and Nb	(41)		(2)	Zr (40) and H	f (72)				
	(3)	Zr (40) and Ta	(73)		(4)	Ti (22) and Zi	r (40)				
32. ^E	Which	n of the following	g statem	ents is correct fo	r a rever	sible process in	a state c	of equilibrium	?		
	(1)	$\Delta G = 2.30RT$	$\log K$		(2)	$\Delta G^{\circ} = -2.30$	$RT \log$	Κ			
	(3)	$\Delta G^{\circ} = 2.30R$	T log K		(4)	$\Delta G = -2.30$	$RT \log P$	K			
33. ^E	The a	ngular momentur	n of elec	ctron in 'd' orbita	al is equ	al to:10					
	(1)	$\sqrt{2}\hbar$	(2)	$2\sqrt{3}\hbar$	(3)	$0\hbar$	(4)	$\sqrt{6}\hbar$			
34. ^E	The b	oiling point of 0.2	2 mol ke	$^{-1}$ solution of X i	n water	is greater than e	quimola	l solution of Y	in water.		
	Which	n one of the follow	wing sta	tements is true i	n this ca	se?	1				
	(1)	Molecular mas	s of X is	s greater than the	e molecu	lar mass of Y.					
	(2)	Molecular mas	s of X is	s less than the m	olecular	mass of Y.					
	(3)	Y is undergoin	g dissoc	iation in water v	vhile X u	undergoes no ch	ange.				
	(4)	X is undergoin	g dissoc	iation in water.		C	C				
35. ^E	The fi	unction of "Sodiu	m pumr	o' is a biological	process	operating in eac	ch and ev	verv cell of all	animals		
	Which	n of the folic wing	g biolog	ically important	ions is a	lso a constituen	t of this	pump?			

(1) Mg^{2+} (2) K^+ (3) Fe^{2+} (4) Ca^{2+}

360 MARKS

- 44.^E When initial concentration of a reactant is doubled in a reaction, its half-life period is not affected. The order of the reaction is:
 - (1) First (2) Second
- (3) More than zero but less than first

- (4) Zero
- **45.**^E A single compound of the structure

SECTION - II (BIOLOGY)

- 46. Which of the following endoparasites of humans does show viviparity?
 - (1) Enterobius vermicularis (2) Trichinella spiralis
 - (3) Ascaris lumbricoides (4) Ancylostoma duodenale
- 47. Cryopreservation of gametes of threatened species in viable and fertile condition can be referred to as:
 - (1) Advanced ex situ conservation of biodiversity
 - (2) In situ conservation by sacred groves (3) In situ cryo-conservation of biodiversity
 - (4) In situ conservation of biodiversity
- **48.** Which one of the following matches is correct?

(1) Alternaria	Sexual reproduction absent	Deuteromycetes
(2) <i>Mucor</i>	Reproduction by Conjugation	Ascomycetes
(3) Agaricus	Parasitic fungus	Basidiomycetes
(4) Phytophthora	Aseptate mycelium	Basidiomycetcs

- **49.** Minerals known to be required in large amounts for plant growth include:
 - (1) calcium, magnesium, manganese, copper
 - (2) potassium, phosphorus, selenium, boron
 - (3) magnesium, sulphur, iron, zinc
 - (4) phosphorus, potassium, sulphur, calcium
- **50.** Which of the following enhances or induces fusion of protoplasts?
 - (1) Polyethylene glycol and sodium nitrate
 - (2) IAA and kinetin
 - (3) IAA and gibberellins (4) Sodium chloride and potassium chloride

51.	Whic	h of these is not a	an important o	component	of initia	tion of parturitio	n in hur	nans?	
	(1)	Synthesis of p	rostaglandins	(2)	Relea	se of oxytocin			
	(3)	Kelease of pro		(4)	Increa	ise in estrogen a	na proge	sterone ratio	
52.	In wh	ich of the follow	ing gametoph	iyte is not ii	ndepend	ent free living?		<i>г</i> .	
	(1)	Marchantia	(2) Pte	eris	(3)	Pinus	(4)	Funaria	
53.	Whic	h of the following	g is not a sexu	ually transn	nitted dis	sease?			
	(1)	Acquired Imm	uno Deficien	cy Syndror	ne (AID	5)			
	(2)	Encenhalitis	IS						
	(3)	Syphilis							
54	Leave	es become modifi	ied into spine	s in·					
51	(1)	Pea	(2) On	ion	(3)	Silk Cotton	(4)	Opuntia	
55.	Whic	h one gives the m	nost valid and	recent exp	lanation	for stomatal mo	vements	?	
	(1)	Potassium infl	lux and efflux	1	(2)	Starch hydrol	ysis	~	
	(3)	Guard cell pho	otosynthesis		(4)	Transpiration			
56.	Whic	h of the following	g had the sma	llest brain	capacity	?	5		
	(1)	Homo sapiens			(2)	Homo neande	erthalens	is	
	(3)	Homo habilis			(4)	Homo erectus	1		
57.	High	value of BOD (B	Biochemical O	xygen Den	nand) in	dicates that:			
	(1)	water is highly	y polluted		(2)	water is less p	olluted		
	(3)	consumption c	of organic ma	tter in the w	vater is l	nigher by the mid	crobes		
	(4)	water is pure							
58.	Slidir	ng filament theory	y can be best	explained a	S:				
	(1)	Actin and Myc	osin filaments	s shorten an	id slide p	bass each other	1		
	(2)	Actin and Myc	osin filaments	s do not sho	orten but	rather slide pass	s each of	her	ta da
	(3)	not shorten	intents side p		ner, wry	USIII IIIaiiieiits si	ionten w	inte Actin manien	is uo
	(4)	When myofila	ments slide p	bass each of	ther, Act	tin filaments sho	orten wh	ile Myosin filame	nt do
		not shorten			,			5	
59.	A gyr	nnast is able to b	alance his boo	dy upside d	own eve	en in the total da	rkness b	ecause of:	
	(1)	Vestibular app	oaratus		(2)	Tectorial men	nbrane		
	(3)	Organ of corti			(4)	Cochlea			
60.	A ma	n with blood grou	up 'A' marrie	s a woman	with blo	ood group 'B'. W	/hat are	all the possible	
	blood	groups of their o	offsprings?						
	(1)	A, B and AB c	only		(2)	A, B, AB and	0		
	(3)	O only			(4)	A and B only			
61.	Туріс	al growth curve i	in plants is:		a				
	(1)	Linear		(2)	Stair-	steps shaped			
	(3)	Parabolic		(4)	Sigmo	010			

62.	The UI (1)	N Conference of South Africa	Parties (2)	on clima Peru	te chang (3)	ge in the Qatar	year 201	1 was h (4)	eld in: Poland		
63.	A techi (1) (3)	nique of micropr Somatic embry Embryo rescue	opagatic	on is: S	(2) (4)	Protop Somati	Protoplast fusion Somatic hybridization				
64.	How n	nany pairs of con	trasting	characte	ers in pea	a plants v	were stud	died by	Mendel in his		
	experimentary (1)	nents?	(2)	Fight	(3)	Seven		(4)	Five		
	(1)		(2)	Light	(3)	Seven		(+)	1 Ive		
65.	\oplus	$K_{(5)} C_{(5)} A_5$	G <u>(2)</u> is	the flora	al formu	la of:					
	(1)	Sesbania	(2)	Petuni	a (3)	Brassie	ca	(4)	Allium		
66.	The cro	ops engineered fo	or glyph	osate are	e resistai	nt/ tolera	nt to:				
	(1)	Bacteria	(2)	Insects	(3)	Herbic	ides	(4)	Fungi		
67.	Which	of the following	, stateme	ents is no	ot correct	t?					
	(1)	Goblet cells are	e present	in the n	nucosa c	of intestin	ne and se	ecrete m	nucus		
	(2)	Oxyntic cells a	re presei	nt in the	mucosa	of stoma	ach and s	secrete I	HCl		
	(3)	Acını are prese	nt in the	pancrea	is and se	crete car	boxyper	otidase			
	(4)	Brunner's gland	as are pr	esent in	the subr	nucosa c	of stomac	ch and s	ecrete pepsinogen		
68.	In sea	urchin DNA, wh	ich is do	ouble stra	anded, 1	7% of th	e bases y	were sho	own to be cytosine.		
	The pe	rcentages of the $G_{17\%} = A_{165}$	other the $\%$ T 32	ee bases	s expecte	ed to be $\frac{1}{2}$	G 17%	n this D	NA are: $5 T 33\%$		
	(1)	G 8.5% A 50%	6, T 24.5	5%		(2)	G 34%	, A 24.5	5, T 24.5%		
69	In Bt c	otton the Bt tox	in nreser	nt in plar	nt tissue	as pro -	toxin is a	converte	ed into active toxin		
07.	due to:	otton, the Bt tox	in preser	n in plui	it tissue	us pro					
	(1)	acidic pH of th	e insect	gut	< - >	(2)	action of	of gut m	nicro-organisms		
	(3)	presence of cor	nversion	factors	in insect	gut					
	(4)	alkaline pH of	the insec	et gut							
70.	Cytoch	romes are found	l in:								
	(1)	Outer wall of n	nitochon	dria		(2)	Cristae	of mito	chondria		
	(3)	Lysosomes				(4)	Matrix	of mito	chondria		
71.	Read th	ne following five	e stateme	ents (A t	o E) and	select th	ne option	with al	ll correct statements:		
	(A)	Mosses and Lic	chens are	e the firs	t organis	sms to co	olonise a	bare ro	ck.		
	(B)	Selaginella 18 a	i homosp	orous p	teridoph	yte.					
	(\mathbf{C})	Main plant hod	III C <i>ycu</i>	onhytes	is gamet	onhytic	whereas	in nter	idonhytes it is snoronhytic		
	(D) (E)	In gymnosperr	ns male	e and fe	male ga	imetophy	vtes are	present	within sporangia located on		
	(-)	sporophyte.	-,		80	P ⁻¹ .	, a. .	r-count			
	(1)	(B), (C) and (D))			(2)	(A), (D) and (E	E)		
	(3)	(B), (C) and (E)			(4)	(A), (C) and (E))		

72.	Which	one of the following	g is correct?						
	(1)	Serum = $Blood + F$	ibrinogen		(2)	Lympl	h = Plas	ma + RI	BC + WBC
	(3)	Blood = Plasma + l	RBC + WBC	C + Plate	elets				
	(4)	Plasma = Blood - L	Lymphocytes	5					
73.	The m	ovement of a gene from	om one linka	age grou	ip to ano	ther is c	alled:		
	(1)	Duplication (2)	Transl	ocation	(3)	Crossi	ng over	(4)	Inversion
74.	Which	body of the Governi	ment of India	a regula	tes GM 1	research	and saf	ety of in	troducing GM
	organi	sms for public servic	es?						
	(1)	Indian Council of A	Agricultural	Researc	h				
	(2)	Genetic Engineerin	lg Approval	Commi	ttee				
	(3)	Research Committe	ee on Geneti	c Manıp	oulation				
	(4)	BIO - safety commi							
75.	Rache	l Carson's famous bo	ok "Silent Sj	pring" is	s related	to:	1.		4
	(1)	Noise pollution		(2) (4)	Popula	tion exp	olosion		
	(3)	Ecosystem manage		(4)	Pestici	de ponu	tion		
76.	Gastri	c juice of infants cont	tains:			1.			
	(1)	nuclease, pepsinog	en, lipase	(2)	pepsin	ogen, lip	base, rei	nnin	
	(3)	amylase, rennin, pe	psinogen	(4)	mantas	e, pepsii	nogen, i	ennin	
77.	Which	of the following is n	ot one of the	e prime	health ris	sks asso	ciated w	vith grea	ter UV
	(1)	on through the atmos Reduced Immune S	sphere due to System	(2)	on of str	atosphei e to eve	ric ozon	e?	
	(3)	Increased liver can	cer	(-)	Increas	sed skin	cancer		
78.	Capac	itation refers to change	pes in the		4,	•			
/01	(1)	ovum before fertiliz	zation	(2)	ovum a	after fert	tilizatio	n	
	(3)	sperm after fertiliza	ation	(4)	sperm	before f	ertilizat	ion	
79.	Most a	nimals are tree dwell	lers in a:						
	(1)	thorn woodland		(2)	temper	ate deci	duous f	orest	
	(3)	tropical rain forest	X	(4)	conifer	rous fore	est		
80.	True n	ucleus is absent in :							
	(1)	Mucor (2) Va	ucheria	(3)	Volvox	;	(4)	Anaba	aena
81.	Gleno	id cavity articulates:							
	(1)	scapula with acrom	ion	(2)	clavicl	e with s	capula		
	(3)	humerus with scape	ula	(4)	clavicl	e with a	cromion	1	
82.	Transr	nission tissue is chara	acteristic fea	ture of:					
	(1)	Solid style		(2)	Dry sti	igma			
	(3)	Wet stigma		(4)	Hollov	v style			
83.	DNA i	s not present in:							
	(1)	Ribosomes (2)	Nuclei	(3)	Mitoch	nondria	(4)	Chlor	oplast

- 84. Gene regulation governing lactose operon of *E. coli* that involves the lac I gene product is:
 - negative and inducible because repressor protein prevents transcription. (1)
 - (2) negative and repressive because repressor protein prevents transcription
 - Feedback inhibitor because excess of β-galactosidase can switch off transcription (3)
 - (4) Positive and inducible because it can be induced by lactose
- 85. Which of the following does not favour the formation of large quantities of dilute urine?
 - (1) Caffeine (2) Renin
 - (3) (4) Atrial-natriuretic factor Alcohol
- 86. What causes a green plant exposed to the light on only one side, to bend toward the source of light as it grows?
 - Green plants seek light because they are phototropic. (1)
 - Light stimulates plant cells on the lighted side to grow faster. (2)
 - Auxin accumulates on the shaded side, stimulating greater cell elongation there. (3)
 - (4) Green plants need light to perform photosynthesis.
- 87. Nuclear envelope is a derivative of:
 - Membrane of Golgi complex (2) Microtubules (1)
 - (3) Rough endoplasmic reticulum (4) Smooth endoplasmic reticulum

88. Select the correct option:

	Ι		II
(a)	Synapsis aligns homologous chromosomes	(i)	Anaphase-II
(b)	Synthesis of RNA and protein	(ii)	Zygotene
(c)	Action of enzyme recombinase	(iii)	G2-phase
(d)	Centromeres do not separate but chromatids move towards opposite poles	(iv)	Anaphase-I
		(v)	Pachytene

	(a)	(b)	(c)	(d)
(1)	(ii)	(iii)	(v)	(iv)

(1)	(11)	(111)	(\mathbf{v})	$(\mathbf{I}\mathbf{V})$
(1)	G	(::)	(\mathbf{r})	Gira

- (2) (1) (11) (1V)
- (3) (ii) (iii) (iv) (v) (4)

(i) (ii) (ii) (iv)

89. Keel is the characteristic feature of flower of:

	(1)	Indigofera	(2)	Aloe	(3)	Tomato	(4)	Tulip
90.	Perig	ynous flowers a	re found	in:				
	(1)	Cucumber	(2)	China rose	(3)	Rose	(4)	Guava
91.	A che	emical signal that	it has bot	h endocrine and	neural r	oles is:		

(1) Calcitonin Epinephrine Cortisol (4) Melatonin (2) (3)

 (1) In situ conservation: Cryopreservation Ex situ conservation: Wildlife Sanctuary (2) In situ conservation: Sational Park (3) In situ conservation: Saced groves (4) In situ conservation: Saced groves (5) In situ conservation: National Park Ex situ conservation: Saced groves (6) In situ conservation: National Park Ex situ conservation: Sate destroying: (1) Leucocytes (2) Helper T - Lymphocytes (3) Thrombocytes (4) B - Lymphocytes (94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Aerocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric	92.	In whi	ch of the following both pairs ha	ve corre	ct comb	ination?	
 Ex situ conservation: Wildlife Sanctuary (2) In situ conservation: Seed Bank Ex situ conservation: Tissue culture Ex situ conservation: Tissue culture Ex situ conservation: Sacred groves (4) In situ conservation: Sacred groves (5) In situ conservation: Sacred groves (6) In situ conservation: Sacred groves (7) In situ conservation: Sacred groves (8) In situ conservation: Sacred groves (93) HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes (3) Thrombocytes (4) B – Lymphocytes (94) Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telecentric (3) Sub-metacentric (4) Metacentric 		(1)	In situ conservation: Cryoprese	rvation			
 (2) In situ conservation: Seed Bank Ex situ conservation: National Park Ex situ conservation: Sacred groves (3) In situ conservation: Sacred groves (4) In situ conservation: Satared groves (4) In situ conservation: Botanical Garden 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes (3) Thrombocytes (4) B – Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Fiyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatigonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Aerocentric (2) Teleentric (3) Sub-metacentric (4) Metacentric 100. The chromosones in which centromere is situated close to one end are: (1) Aerocentric (2) Teleentric (3) Neither root nor shoot will die (4) The shoot dire together <th></th><th></th><th>Ex situ conservation: Wildlife S</th><th>Sanctua</th><th>ry</th><th></th><th></th>			Ex situ conservation: Wildlife S	Sanctua	ry		
Ex situ conservation: National Park (3) In situ conservation: Sacred groves Ex situ conservation: Sacred groves (4) In situ conservation: Botanical Garden 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes (3) Thrombocytes (4) B – Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uierus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eves (4) Segmentation (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplast are: (1) Grana (2) Stroma lamellae (3) Sub-matacentric (4) Metacentric (4) Metacentric (5) No change in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-matacentric (4) Metacentric (4) Metacentric (5) Stroma lamellae (6) Stroma lamellae (7) The shoot dies first (7) The s		(2)	In situ conservation: Seed Bank	K			
 (3) In situ conservation: Tissue culture Ex situ conservation: Sacred groves (4) In situ conservation: Sacred groves (5) In situ conservation: Botanical Garden 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T - Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Spermation (3) Secondary polar body (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatigonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous saes in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Neither root nor shoot will die (4) The shoot dies first 			Ex situ conservation: National	Park			
 Ex situ conservation: Sacred groves (4) In situ conservation: National Park Ex situ conservation: Botanical Garden 93. HIV that causes AIDS, first starts destroying: Leucoytes Helper T – Lymphocytes 94. Hysterectomy is surgical removal of: Prostate gland Vas-deference Mammary glands Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: More concentrated urine No change in quality and quantity of urine Scattered vascular bundles Vasculature without cambium Cambium sandwiched between phloem and xylem along the radius Vasculature without cambium Cambium sandwiched between phloem and xylem along the radius Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? Bilateral symmetry Segmentation 98. Which of the following cells during gametogenesis is normally diploid? Secondary polar body Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Gama (2) Stroma and (3) Stroma (4) Cristae 100. The core sin which centromere is situated close to one end are: Arcocentric (2) Telocentric (2) The shoot and root die together Neither root nor shoot will die The shoot dies first 		(3)	In situ conservation: Tissue cul	ture			
 (4) In situ conservation: National Park Ex situ conservation: Botanical Garden 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monecot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The choronsomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Neither root nor shoot will die (4) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 			Ex situ conservation: Sacred gr	oves			
 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes (3) Thrombocytes (4) B – Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellac (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Neither root nor shoot will die (4) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot and root die together 		(4)	In situ conservation: National F	Park			
 93. HIV that causes AIDS, first starts destroying: (1) Leucocytes (2) Helper T – Lymphocytes (3) Thrombocytes (4) B – Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellac (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Neither root nor shoot will die (4) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 			Ex situ conservation: Botanical	Garden	l		
(1) Leucocytes (2) Helper T - Lymphocytes (3) Thrombocytes (4) B - Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) Uterus 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4)	93.	HIV th	nat causes AIDS, first starts destro	oying:			
 (3) Thrombocytes (4) B - Lymphocytes 94. Hysterectomy is surgical removal of: (1) Prostate gland (2) Vas-deference (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phoem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Nu-metacentric (4) Metacentric 		(1)	Leucocytes	(2)	Helpe	r T – Lymphocytes	
 94. Hysterectomy is surgical removal of: Prostate gland Vas-deference Mammary glands Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: More concentrated urine No change in quality and quantity of urine No urine formation More cilculated urine 96. A major characteristic of the monocot root is the presence of: Scattered vascular bundles Vasculature without cambium Cambium sandwiched between phloem and xylem along the radius Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? Open vascular bundles 97. Which of the following cells during gametogenesis is normally diploid? Bilateral symmetry Exoskeleton Fyes Scenndary plar body 98. Which of the following cells during gametogenesis is normally diploid? Secondary polar body Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Scenndary plar body 99. The structures that are formed by stacking of		(3)	Thrombocytes	(4)	$B - L_2$	ymphocytes	
 (1) Prostate gland (2) Vas-deterence (3) Mammary glands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 	94.	Hyster	rectomy is surgical removal of:			A7	
 (3) Mammary grands (4) Uterus 95. Removal of proximal convoluted tubule from the nephron will result in: (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 		(1)	Prostate gland		(2)	Vas-deference	~~~
 95. Removal of proximal convoluted tubule from the nephron will result in: More concentrated urine No change in quality and quantity of urine No urine formation More diluted urine 96. A major characteristic of the monocot root is the presence of: Scattered vascular bundles Vasculature without cambium Cambium sandwiched between phloem and xylem along the radius Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? Bilateral symmetry Eyes Spermatid Spermatid Spermatid Spermatid Spermatid Spermatid Secondary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Grana Stroma lamellae Stroma Stroma 99. The chromosomes in which centromere is situated close to one end are: Acrocentric The cord clies first The shoot and root die together Neither root nor shoot will die The shoot dies first 		(3)	Mammary glands		(4)	Uterus	,O'
 (1) More concentrated urine (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 	95.	Remov	val of proximal convoluted tubule	e from tl	he nephr	on will result in:	
 (2) No change in quality and quantity of urine (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	More concentrated urine				
 (3) No urine formation (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 		(2)	No change in quality and quant	ity of u	rine		
 (4) More diluted urine 96. A major characteristic of the monocot root is the presence of: (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(3)	No urine formation				
 96. A major characteristic of the monocot root is the presence of: Scattered vascular bundles Vasculature without cambium Cambium sandwiched between phloem and xylem along the radius Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? Bilateral symmetry Eyes Segmentation 98. Which of the following cells during gametogenesis is normally diploid? Spermatid Spermatid Spermatogonia Secondary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Grana Stroma lamellae Stroma lamellae Sub-metacentric 100. The chromosomes in which centromere is situated close to one end are: Acrocentric Telocentric Telocentric The shoot and root die together Neither root nor shoot will die The shoot dies first The shoot dies first Neither root nor shoot will die 		(4)	More diluted urine				
 (1) Scattered vascular bundles (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 	96.	A maj	or characteristic of the monocot r	oot is th	e preser	nce of:	
 (2) Vasculature without cambium (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	Scattered vascular bundles				
 (3) Cambium sandwiched between phloem and xylem along the radius (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(2)	Vasculature without cambium		4.		
 (4) Open vascular bundles 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Sub-metacentric (4) Metacentric 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(3)	Cambium sandwiched between	phloem	and xy	lem along the radius	
 97. Which of the following characteristics is mainly responsible for diversification of insects on land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(4)	Open vascular bundles	,,)			
land? (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first (2) The shoot dies first	97.	Which	of the following characteristics i	s mainl	y respon	sible for diversification	on of insects on
 (1) Bilateral symmetry (2) Exoskeleton (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		land?				T	
 (3) Eyes (4) Segmentation 98. Which of the following cells during gametogenesis is normally diploid? (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	Bilateral symmetry		(2)	Exoskeleton	
 98. Which of the following cells during gametogenesis is normally diploid? Spermatid Spermatid Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Grana Stroma lamellae Stroma Cristae 100. The chromosomes in which centromere is situated close to one end are: Acrocentric Telocentric Sub-metacentric 101. In ring girdled plant: The root dies first Neither root nor shoot will die The shoot dies first 		(3)	Eyes		(4)	Segmentation	
 (1) Spermatid (2) Spermatogonia (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 	98.	Which	of the following cells during gar	netogen	esis is n	ormally diploid?	
 (3) Secondary polar body (4) Primary polar body 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	Spermatid		(2)	Spermatogonia	
 99. The structures that are formed by stacking of organized flattened membranous sacs in the chloroplasts are: Grana Stroma lamellae Stroma Cristae 100. The chromosomes in which centromere is situated close to one end are: Acrocentric Telocentric Sub-metacentric 101. In ring girdled plant: The root dies first Neither root nor shoot will die 		(3)	Secondary polar body		(4)	Primary polar body	
 chloroplasts are: (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 	99.	The st	ructures that are formed by stacki	ing of o	rganized	flattened membranou	is sacs in the
 (1) Grana (2) Stroma lamellae (3) Stroma (4) Cristae 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		chloro	plasts are:				
 100. The chromosomes in which centromere is situated close to one end are: (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	Grana (2) Stroma	a lamella	ae (3)	Stroma (4)	Cristae
 (1) Acrocentric (2) Telocentric (3) Sub-metacentric (4) Metacentric 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 	100.	The ch	romosomes in which centromere	is situa	ted close	e to one end are:	
 101. In ring girdled plant: (1) The root dies first (2) The shoot and root die together (3) Neither root nor shoot will die (4) The shoot dies first 		(1)	Acrocentric (2) Teloce	ntric	(3)	Sub-metacentric (4)	Metacentric
 The root dies first The shoot and root die together Neither root nor shoot will die The shoot dies first 	101.	In ring	girdled plant:				
(3) Neither root nor shoot will die (4) The shoot dies first		(1)	The root dies first		(2)	The shoot and root	die together
		(3)	Neither root nor shoot will die		(4)	The shoot dies first	

102.	Vertical distribution of different species occupying different levels in a biotic community is								
	known (1)	as: Stratification	(2)	Zonation	(3)	Pyramid	(4)	Divergence	
103.	Multip (1) (2) (3) (4)	le alleles are pre At different loc At the same loc On non-sister c On different ch	esent: ci on the cus of th chromati	same chromoso e chromosome ds mes	ome				
104.	The ma	ass of living mat	erial at a	a trophic level a	t a partic	ular time is call	led:		
	(1) (3)	Standing state Standing crop		, T	(2) (4)	Net primary p Gross primar	productiv y product	ity .ivity	
105.	Which	of the following	g animals	s is not viviparc	ous?				
	(1)	Elephant	(2)	Platypus	(3)	Whale	(4)	Flying fox (Bat)	
106.	In an e (1) (3)	cosystem the rat Gross primary Net productivit	e of proo producti ty	duction of organ ivity	nic matte (2) (4)	r during photos Secondary pr Net primary j	ynthesis oductivit productiv	is termed as: y ity	
107.	Erythr	opoiesis starts in	:)		
	(1)	Liver	(2)	Spleen	(3)	Red bone ma	rrow (4)	Kidney	
108.	Which	is the most com	mon me	chanism of gen	etic varia	tion in the pop	ulation of	a sexually-	
	reprod	ucing organism? Chromosomal	aberratio	ons	(2)	Genetic drift			
	(1)	Recombination	1	,110	(4)	Transduction			
109.	Blood	pressure in the n	nammali	an aorta is max	imum du	ring:			
	(1)	Diastole of the	right ve	ntricle	(2)	Systole of the	e left vent	ricle	
	(3)	Diastole of the	right at	rium	(4)	Systole of the	e left atriu	ım	
110.	When	you hold your bi	reath, wh	nich of the follo	wing gas	changes in blo	od would	l first lead to	
	the urg (1) (3)	te to breathe? rising CO ₂ con rising CO ₂ and	centratio	on O_2 concentration	(2) n (4)	falling CO ₂ c falling O ₂ cor	oncentrat	ion m	
111.	Vascul	ar bundles in mo	onocotyl	edons are consi	dered clo	osed because:			
	(1)	Cambium is ab	osent						
	(2)	There are no ve	essels wi	ith perforations					
	(3) (4)	A bundle sheet	unded al	Il around by phi	loem				
112	(4) Mala a	A Dunuie Sileat	llotod is						
112	(1)	Anahaena	(2)	Ectocarpus	(3)	Spirogyra	(4)	Polysiphonia	
113	Which	one of the follo	wing ma	v require nollin	ators bu	t is genetically	similar to	autogamy?	
1101	(1)	Xenogamy	(2)	Apogamy	(3)	Cleistogamy	(4)	Geitonogamy	
		<i>2</i> , <i>2</i>			. /	2 7	. /		

114.	In ging	ger vegetative p Offsets	propagatio	on occurs throug Bulbils	sh: (3)	Runners	(4)	Rhizome		
115	(F) Which	one of the foll	(=)	not on inclusion	body for	ind in prokaryo	tos?	Tunzonie		
115.	(1) (3)	Cyanophycean granule Polysome				Glycogen granule Phosphate granule				
116.	A soma the sam (1) (2) (3) (4)	atic cell that has just completed the S phase of its cell cycle, as compared to gamete of me species, has: same number of chromosomes but twice the amount of DNA twice the number of chromosomes and four times the amount of DNA four times the number of chromosomes and twice the amount of DNA twice the number of chromosomes and twice the amount of DNA								
117.	Alleles (1) (3)	are: true breeding heterozygote	g homozyg s	gotes	(2) (4)	different mole different pher	lecular forms of a gene			
118.	Select (1) (3)	the correct matching in the following pairs Smooth ER - Synthesis of lipids Rough ER - Oxidation of fatty acids				Rough ER - Synthesis of glycogen Smooth ER - Oxidation of phospholipids				
119.	The ter	The terga, sterna and pleura of cockroach body are joined by:								
	(1) (3)	Muscular tiss Cartilage	sue		(2) (4)	(2) Arthrodial membrane(4) Cementing glue				
120.	Which	Which of the following represents the combination without any exception?								
		Characteristics						Class		
	(1)	 Mouth ventral; gills without operculum; skin with placoid scales; persistent notochord Sucking and circular mouth; jaws absent, integument without scales; paired appendages 					Chond	richthyes		
	(2)						Cyclostomata			
	(3)	(3) Body covered with feathers; skin moist and glandular; fore- limbs form wings; lungs with air sacs								
	(4) Mammary gland; hair on body; pinnae; two pairs of limbs Mammalia						nalia			
121	Which	Which one of the following statements is incorrect?								

- (1) In competitive inhibition, the inhibitor molecule is not chemically changed by the enzyme.
- (2) The competitive inhibitor does not affect the rate of breakdown of the enzyme-substrate complex.
- (3) The presence of the competitive inhibitor decreases the Km of the enzyme for the substrate.
- (4) A competitive inhibitor reacts reversibly with the enzyme to form an enzyme-inhibitor complex.

- 122. Which of the following regions of the brain is incorrectly paired with its function?
 - (1) Cerebellum language comprehension
 - (2) Corpus callosum communication between the left and right cerebral cortices
 - (3) Cerebrum calculation and contemplation
 - (4) Medulla oblongata homeostatic control
- **123.** Which one of the following statements is not true?
 - (1) Pollen grains of some plants cause severe allergies and bronchial afflictions in some people
 - (2) The flowers pollinated by flies and bats secrete foul odour to attract them
 - (3) Honey is made by bees by digesting pollen collected from flowers
 - (4) Pollen grains are rich in nutrients, and they are used in the form of tablets and syrups
- **124.** The active form of *Entamoeba histolytica* feeds upon:
 - (1) mucosa and submucosa of colon only
 - (2) food in intestine
 - (3) blood only
 - (4) erythrocytes; mucosa and submucosa of colon
- 125. Which of the following viruses is not transferred through semen of an infected male?
 - (1) Human immunodeficiency virus
 - (2) Chikungunya virus
 - (3) Ebola virus
 - (4) Hepatitis B virus
- 126. A population will not exist in Hardy-Weinberg equilibrium if:
 - (1) there are no mutations (2) there is no migration
 - (3) the population is large (4) individuals mate selectively

(3)

- **127.** The guts of cow and buffalo possess:
 - (1) *Chlorella* spp (2) Methanogens
- Cyanobacteria (4) Fucus spp

JNL'

- **128.** The hilum is a scar on the:
 - (1) Fruit, where it was attached to pedicel
 - (2) Fruit, where style was present
 - (3) Seed, where micropyle was present
 - (4) Seed, where funicle was attached
- **129.** Secondary Succession takes place on / in:
 - (1) Degraded forest (2) Newly created pond
 - (3) Newly cooled lava (4) Bare rock
- **130.** Which one of the following statements is wrong?
 - (1) Agar-agar is obtained from *Gelidium* and *Gracilaria*
 - (2) *Chlorella* and *Spirulina* are used as space food
 - (3) Mannitol is stored food in Rhodophyceae
 - (4) Algin and carragen are products of algae

131. The following graph depicts changes in two populations (A and B) of herbivores in a grassy field. A possible reason for these changes is that:

- (1) Population B competed more successfully for food than population A
- (2) Population A produced more offspring than population B
- (3) Population A consumed the members of population B
- (4) Both plant populations in this habitat decreased
- **132.** Match each disease with its correct type of vaccine:

(a)	tuber	culosis			(i)	harmless virus
(b)	whooping cough				(ii)	inactivated toxin
(c)	diphtheria				(iii)	killed bacteria
(d)	polio				(iv)	harmless bacteria
	(a)	(b)	(c)	(d)		
(1)	(iii)	(ii)	(iv)	(i)		
(2)	(iv)	(iii)	(ii)	(i)		
(3)	(i)	(ii)	(iv)	(iii)		
(4)	(ii)	(i)	(iii)	(iv)		

- 133. Which of the following are the important floral rewards to the animal pollinators?
 - (1) Nectar and pollen grains
 - (2) Floral fragrance and calcium crystals
 - (3) Protein pellicle and stigmatic exudates
 - (4) Colour and large size of flower
- 134. An abnormal human baby with 'XXX' sex chromosomes was born due to:
 - (1) formation of abnormal ova in the mother
 - (2) fusion of two ova and one sperm
 - (3) fusion of two sperms and one ovum
 - (4) formation of abnormal sperms in the father
- **135.** Transpiration and root pressure cause water to rise in plants by:
 - (1) pulling and pushing it, respectively (2)
 - pushing it upward
 - (3) pushing and pulling it, respectively (4) pulling it upward

180 MARKS

SECTION - III (PHYSICS)

- **136.** An electron moving in a circular orbit of radius r makes n rotations per second. The magnetic field produced at the centre has magnitude:
 - (1) Zero (2) $\frac{\mu_0 n^2 e}{2r}$ (3) $\frac{\mu_0 n e}{2r}$ (4) $\frac{\mu_0 n e}{2\pi r}$
- **137.** One mole of an ideal diatomic gas undergoes a transition from A to B along a path AB as shown in the figure,

- 143. Across a metallic conductor of non-uniform cross section a constant potential difference is applied. The quantity which remains constant along the conductor is: '

 (1) current
 (2) drift velocity
 (3) electric field
 (4) current density

 144. On observing light from three different stars P, Q and R, it was found that intensity of violet colour is maximum in the spectrum of P, the intensity of green colour is maximum in the spectrum of R and the intensity of red colour is maximum in the spectrum of Q. If T_P, T_Q and I_R are the respective absolute
 - temperatures of P, Q and R, then it can be concluded from the above observations that: (1) $T_P > T_R > T_Q$ (2) $T_P < T_R < T_Q$ (3) $T_P < T_Q < T_R$ (4) $T_P > T_Q > T_R$
- 145. A potentiometer wire has length 4 m and resistance 8Ω. The resistance that must be connected in series with the wire and an accumulator of e.m.f. 2V, so as to get a potential gradient 1 mV per cm on the wire is:
 - (1) 40Ω (2) 44Ω (3) 48Ω (4) 32Ω

146. Consider 3^{rd} orbit of He⁺ (Helium), using non–relativistic approach, the speed of electron in this orbit will be [Given K = 9 × 10⁹ constant, Z = 2 and h(Planck's Constant) = 6.6×10^{-34} J s]

- (1) $1.46 \times 10^6 \text{ m/s}$ (2) $0.73 \times 10^6 \text{ m/s}$
- (3) 3.0×10^8 m/s (4) 2.92×10^6 m/s
- 147. A wire carrying current I has the shape as shown in adjoining figure. Linear parts of the wire are very long and parallel to X-axis while semicircular portion of radius R is lying in Y-Z plane. Magnetic- field at point O is:

(1)
$$\vec{B} = -\frac{\mu_0}{4\pi} \frac{I}{R} (\pi \hat{i} - 2\hat{k})$$

(3) $\vec{B} = \frac{\mu_0}{4\pi} \frac{I}{R} (\pi \hat{i} - 2\hat{k})$
(4) $\vec{B} = \frac{\mu_0}{4\pi} \frac{I}{R} (\pi \hat{i} + 2\hat{k})$

148. Which of the following figures represent the variation of particle momentum and the associated de-Broglie wavelength?

(1)
$$\begin{bmatrix} p \\ \uparrow \\ \hline \rightarrow \lambda \end{bmatrix}$$
 (2) $\begin{bmatrix} p \\ \uparrow \\ \hline \rightarrow \lambda \end{bmatrix}$ (3) $\begin{bmatrix} p \\ \uparrow \\ \hline \rightarrow \lambda \end{bmatrix}$ (4) $\begin{bmatrix} p \\ \uparrow \\ \hline \rightarrow \lambda \end{bmatrix}$

- **149.** A parallel plate air capacitor of capacitance C is connected to a cell of e.m.f. V and then disconnected from it. A dielectric slab of dielectric constant K, which can just fill the air gap of the capacitor, is now inserted in it. Which of the following is incorrect?
 - (1) The energy stored in the capacitor decreases K times

- (2) The change in energy stored is $\frac{1}{2}CV^2\left(\frac{1}{K}-1\right)$
- (3) The charge on the capacitor is not conserved
- (4) The potential difference between the plates decreases K times
- 150. The fundamental frequency of a closed organ pipe of length 20 cm is equal to the second overtone of an organ pipe open at both the ends. The length of organ pipe open at both the ends is:
 (1) 100 cm
 (2) 120 cm
 (3) 140 cm
 (4) 80 cm
- 151. The refracting angle of a prism is A, and refractive index of the material of the prism is cot(A/2). The angle of minimum deviation is
 (1) 180°-2A
 (2) 90°-A
 (3) 180°+2A
 (4) 180°-3A
- 52 Which have a state is non-negated by the fallening combination of last state?

153. A carnot engine, having an efficiency of $\eta = \frac{1}{10}$ as heat engine, is used as a refrigerator. If the work done on the system is 10 J, the amount of energy absorbed from the reservoir at lower temperature is: (1) 99 J (2) 90 J (3) 1 J (4) 100 J

154. A certain metallic surface is illuminated with monochromatic light of wavelength, X. The stopping potential for photo-electric current for this light is 3V₀. If the same surface is illuminated with light of wavelength 2 K the stopping potential is V0. The threshold wavelength -for this surface for photo-electric effect is:

- (1) 4λ (2) $\frac{\lambda}{4}$ (3) $\frac{\lambda}{6}$ (4) 6λ
- 155. A radiation of energy 'E' falls normally on a perfectly reflecting surface. The momentum transferred to the surface is (C = Velocity of light):
 - (1) $\frac{2E}{C}$ (2) $\frac{2E}{C^2}$ (3) $\frac{E}{C^2}$ (4) $\frac{E}{C}$
- **156.** A mass m moves in a circle on a smooth horizontal plane with velocity v_0 at a radius R_0 , The mass is attached to a string which passes through a smooth hole in the plane as shown.

The tension in the string is increased gradually and finally m moves in a circle of radius $\frac{R_0}{2}$. The final value of the kinetic energy is:

- (1) $\frac{1}{4}mv_0^2$ (2) $2mv_0^2$ (3) $\frac{1}{2}mv_0^2$ (4) mv_0^2
- **157.** Two identical thin plano-convex glass lenses (refractive index 1.5) each having radius of curvature of 20 cm are placed with their convex surfaces in contact at the centre. The intervening space is filled with oil of refractive index 1.7. The focal length of the combination is:
 - (1) -25 cm (2) -50 cm (3) 50 cm (4) -20 cm
- **158.** A block A of mass m_1 rests on a horizontal table. A light string connected to it passes over a frictionless pulley at the edge of table and from its other end another block B of mass m_2 is suspended. The coefficient of kinetic friction between the block and the table is μ_k . When the block A is sliding on the table, the tension in the string is:

(1)
$$\frac{(m_2 - \mu_k m_1)g}{(m_1 + m_2)}$$
 (2) $\frac{m_1 m_2 (1 + \mu_k)g}{(m_1 + m_2)}$ (3) $\frac{m_1 m_2 (1 - \mu_k)g}{(m_1 + m_2)}$ (4) $\frac{(m_2 - \mu_k m_1)g}{(m_1 + m_2)}$

- **159.** A particle is executing SHM along a straight line. Its velocities at distances x_1 and x_2 from the mean position are V_1 and V_2 , respectively. Its time period is:
 - (1) $2\pi\sqrt{\frac{x_2^2-x_1^2}{V_1^2-V_2^2}}$ (2) $2\pi\sqrt{\frac{V_1^2+V_2^2}{x_1^2+x_2^2}}$ (3) $2\pi\sqrt{\frac{V_1^2-V_2^2}{x_1^2-x_2^2}}$ (4) $2\pi\sqrt{\frac{x_1^2+x_2^2}{V_1^2+V_2^2}}$
- 160. A ship A is moving Westwards with a speed of 10 km h⁻¹ and a ship B100 km South of A, is moving Northwards with a speed of 10 km h⁻¹. The time after which the distance between them becomes shortest, is:
 - (1) 5 h (2) $5\sqrt{2}$ h (3) $10\sqrt{2}$ h (4) 0 h
- **161.** A rod of weight W is supported by two parallel knife edges A and B and is in equilibrium in a horizontal position. The knives are at a distance d from each other. The centre of mass of the rod is at distance x from A. The normal reaction on A is:

(1)
$$\frac{Wd}{x}$$
 (2) $\frac{W(d-x)}{x}$ (3) $\frac{W(d-x)}{d}$ (4) $\frac{Wx}{d}$

- 162. The approximate depth of an ocean is 2700 m. The compressibility of water is $45.4 \times 10^{-11} \text{ Pa}^{-1}$ and density of water is 10^3 kg/m^3 . What fractional compression of water will be obtained at the bottom of the ocean?
 - (1) 1.0×10^{-2} (2) 1.2×10^{-2} (3) 1.4×10^{-2} (4) 0.8×10^{-2}
- 163. Two particles of masses m_1 , m_2 move with initial velocities u_1 and u_2 . On collision, one of the particles get excited to higher level, after absorbing energy ε . If final velocities of particles be v_1 and v_2 then we must have.

(1)
$$\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 - \varepsilon$$
 (2) $\frac{1}{2}m_1u_1^2 + \frac{1}{2}m_2u_2^2 - \varepsilon = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2$

(3)
$$\frac{1}{2}m_1^2u_1^2 + \frac{1}{2}m_2^2u_2^2 + \varepsilon = \frac{1}{2}m_1^2v_1^2 + \frac{1}{2}m_2^2v_2^2$$
 (4) $m_1^2u_1 + m_2^2u_2 - \varepsilon = m_1^2v_1 + m_2^2v_2$

164. Kepler's third law states that square of period of revolution (T) of a planet around the sun, is proportional to third power of average distance r between sun and planet i.e. $T^2 = Kr^3$ here K is constant.

If the masses of sun and planet are M and m respectively then as per Newton's law of gravitation force of attraction between them is

$$F = \frac{GMm}{r^2}$$
, here G is gravitational constant. The relation between G and K is described as:

(1) $GMK = 4\pi^2$ (2) K = G (3) $K = \frac{1}{G}$ (4) $GK = 4\pi^2$

165. A block of mass 10 kg, moving in x direction with a constant speed of 10 ms⁻¹, is subjected to a retarding force F = 0.1 x J/m during its travel from x = 20 m to 30 m. Its final KE will be (1) 450 J (2) 275 J (3) 250 J (4) 475 J

166. A wind with speed 40 m/s blows parallel to the roof of a house. The area of the roof is 250 m². Assuming that the pressure inside the house is atmospheric pressure, the fore exerted by the wind on the roof and the direction of the force will be. $(P_{air} = 1.2 \text{kg} / \text{m}^3)$

 1)
 4.8×10^5 N, upwards
 (2)
 2.4×10^5 N, upwards

 (3)
 2.4×10^5 N, downwards
 (4)
 4.8×10^5 N, downwards

167. Two spherical bodies of mass M and 5 M and radii R and 2 R are released in free space with initial separation between their centres equal to 12 R. If they attract each other due to gravitational force only, then the distance covered by the smaller body before collision is :

(1) 4.5 R (2) 7.5 R (3) 1.5 R (4) 2.5 R

168. A resistance 'R' draws power 'P' when connected to an AC source. If an inductance is now placed is series with the resistance, such that the impedance of the circuit becomes 'Z', the power drawn will be.

(1)
$$P\sqrt{\frac{R}{Z}}$$
 (2) $P\left(\frac{R}{Z}\right)$ (3) P (4) $P\left(\frac{R}{Z}\right)^2$

169. The ratio of the specific heats $\frac{C_p}{C_v} = \gamma$ in terms of degrees of freedom (n) is given by:

(1)
$$\left(1+\frac{n}{3}\right)$$
 (2) $\left(1+\frac{2}{n}\right)$ (3) $\left(1+\frac{n}{2}\right)$ (4) $\left(1+\frac{1}{n}\right)$

170. Figure below shows two paths that may be taken by a gas to go from a state A to a state C.

173. Three blocks A, B and C, of masses 4 kg, 2 kg and 1 kg respectively, are in contact on a frictionless surface, as shown. If a force of 14 N is applied on the 4 kg block, then the contact force between A and B is:

174. A, B and C are voltmeters of resistance R, 1.5R and 3R respectively as shown in the figure. When some potential difference is applied between X and Y, the voltmeter readings are V_A, V_B and V_C respectively. Then :

175. Three identical spherical shells, each of mass m and radius r are placed as shown in figure. Consider an axis XX' which is touching to two shells and passing through diameter of third shell. Moment of inertia of the system consisting of these three spherical shells about XX' axis is

(1)
$$3 \text{ mr}^2$$
 (2) $\frac{16}{5} \text{mr}^2$ (3) 4mr^2 (4) $\frac{11}{5} \text{mr}^2$

176. The electric field in a certain region is acting radially outward and is given by E = Ar. A charged contained in a sphere of radius 'a' centred at the origin of the field, will be given by

(1)
$$A \in_0 a^2$$
 (2) $4\pi \in_0 Aa^3$ (3) $\in_0 Aa^3$ (4) $4\pi \in_0 Aa^2$]

- 177. The two ends of a metal rod are maintained at temperatures 100°C. The rate of heat flow in the rod is found to be 4.0 J/s. If the ends are maintained at temperatures 200°C and 210°C, the rate of heat flow will be:
 - (1) 16.8 J/s (2) 8.0 J/s (3) 4.0 J/s (4) 44.0 J/s
- 178. Two similar springs P and Q have spring constants K_P and K_Q , such that $K_P > K_Q$. They are stretched, first by the same amount (case a), then by the same force (case b). The work done by the springs W_P and W_Q are related as, in case (a) and case (b), respectively:

(1)
$$W_{p} = W_{Q}; W_{p} = W_{Q}$$
 (2) $W_{p} > W_{Q}; W_{Q} > W_{p}$

- (3) $W_{p} < W_{Q}; W_{Q} < W_{p}$ (4) $W_{p} = W_{Q}; W_{p} > W_{Q}$
- **179.** A conducting square frame of side 'a' and a long straight wire carrying current I are located in the same plane as shown in the figure. The frame moves induced in the frame will be proportional to

180. A particle of mass m is driven by a machine that delivers a constant power k watts. If the particle starts from rest the force on the particle at time t is

(1)
$$\sqrt{mk} t^{-\frac{1}{2}}$$
 (2) $\sqrt{2mk} t^{-\frac{1}{2}}$ (3) $\frac{1}{2} \sqrt{mk} t^{-\frac{1}{2}}$ (4) $\sqrt{\frac{mk}{2}} t^{-\frac{1}{2}}$

CHFMISTRV	BIOI	OCV	PHVSICS
$\frac{1}{4}$	46 (2)	91 (2)	136 (3)
1. (4)	40. (2) 47 (1)	97. (2) 97 (4)	130. (3) 137 (1)
2. (2) 3 (3)	-7. (1) 48 (1)		137. (1) 138 (2)
3. (3)		93. (2)	130. (2) 130 (1)
4. (3)	49. (4)		139. (1)
5. (4)	50. (1)	95. (4)	140. (1)
$\begin{array}{c} 6. \mathbf{(3)} \\ 7 \mathbf{(3)} \end{array}$	51. (3)	96. (2)	
7. (2)	52. (3)	97. (2)	142. (4)
8. (2)	53. (3)	98. (2)	143. (1)
9. (3)	54. (4)	99. (1)	144. (1)
10. (2)	55. (1)	100. (1)	145. (4)
11. (1)	56. (3)	101. (1)	146. (1)
12. (4)	57. (3)	102. (1)	147. (2)
13. (4)	58. (4)	103. (2)	148. (1)
14. (4)	59. (1)	104. (3)	149. (3)
15. (1)	60. (2)	105. (2)	150. (2)
16. (2)	61. (4)	106. (1)	151. (1)
17. (3)	62. (1)	107. (1)	152. (2)
18. (1)	63 . (1)	108. (3)	153. (2)
19. (1)	64. (3)	109. (2)	154. (1)
20. (4)	65. (2)	110. (1)	155. (1)
21. (2)	66. (3)	111. (1)	156. (2)
22. (2)	67. (4)	112. (2)	157. (2)
23. (1)	68. (2)	113. (4)	158. (2)
24. (1)	69. (4)	114. (4)	159. (1)
25. (4)	70. (2)	115. (3)	160. (1)
26. (2)	71. (2)	116. (4)	161. (3)
27. (4)	72. (3)	117. (2)	162. (2)
$\frac{1}{28}$. (4)	73. (2)	118. (1)	163. (2)
29. (1)	74. (2)	119. (2)	164. (1)
30. (2)	75. (4)	120. (1)	165. (4)
31 (2)	76. (2)	121. (1)	166. (2)
32 (2)	77 (3)	122. (1)	167 (2)
33 (4)	78 (4)	123 (1) 123 (2)	168 (4)
34 (1)	79 (3)	120. (2) 124 (1)	169 (2)
35 (2)	80 (4)	12.0 (1) 125 (2)	170 (2)
36 (1)		125. (2) 126 (4)	170. (2) 171 (2)
37 (4)	82 (1)	120. (4) 127 (2)	171. (2) 172 (3)
		127. (2) 128 (4)	172. (3) 173 (1)
30. (1)	83. (1)		173. (1) 174 (4)
		127. (1) 120 (2)	177. (4)
	03. (2) 86 (3)	$ \begin{array}{cccc} 130. & (3) \\ 121 & (1) \end{array} $	1/3. (3) 176 (2)
41. (1)	00. (3) 97 (3)	131. (1) 132 (2)	1/0. (2) 177 (2)
42. (3)	$\begin{array}{c} 0/. (3) \\ 00 (1) \end{array}$	132. (2)	1/1. (3)
43. (3)	$\begin{array}{c} \delta \delta. (1) \\ 0 0 (1) \end{array}$	133. (1)	$1/\delta.$ (2)
	89. (1)		1/9. (3)
45. (1)	90. (3)	135. (1)	180. (4)

ANSWER KEY